Early-warning signals for critical transitions

Marten Scheffer et al.
Nature, September 3, 2009

September 24, 2009 - Journal club

Michiel D'Haene
Outline

• Introduction

• Theory
 • Critical slowing down and its symptoms
 • Skewness and flickering before transitions
 • Indicators in cyclic and chaotic systems
 • Spatial patterns as early-warning signals

• Precursors of transitions in real systems
 • Climate
 • Ecosystems
 • Asthma attacks and epileptic seizures
 • Finance

• Outlook
Introduction

• Critical transitions: abrupt shift from one state to another
 • Happen when the system pass bifurcations
 • ex. asthma attacks, market crashes, ocean circulation shift...
• Hard to predict
 • Possibly little change in state of system before tipping point
 • Models of complex systems: not accurate enough
• But: certain generic symptoms may occur in a wide class of systems approaching a critical point
• Particularly relevant are 'catastrophic bifurcations'
Introduction
Critical slowing down

- One of the most important clues as indicators for reaching a critical threshold
- In the neighborhood of a fold bifurcation points
 - The dominant eigen-value characterizing the rates of change around equilibrium becomes zero
 - System becomes increasingly slow in recovering from small perturbations
- Thus: recovery from small perturbation can be used as indicator for closeness to bifurcation point
 - Only rate of change matters: small perturbation is adequate = no risk of driving the system over the threshold
Critical slowing down

• But in natural systems
 • Impractical to monitor recovery rates
 • Presence of natural perturbations

• Important prediction:
 • Slowing down \rightarrow increase in 'memory'
 • Can be measured using autocorrelation
 • Autocorrelation increases long before critical transition

• Also: increased variance
 • Because impact of shocks do not decay
Skewness and flickering

- Skewness
 - Asymmetry of fluctuations may increase before catastrophic bifurcation
 - Not a result of critical slowing down

- Flickering
 - If stochastic forcing is strong enough to switch between two alternative attractors
 - Also early-warning if underlying slow change in condition persists
 - E.g. in climatic shifts and epileptic seizures
Indicators in cyclic/chaotic systems

• Previous principles need an attractor that corresponds to a stable point (e.g. the fold catastrophe)
• In cyclic/chaotic systems: less well studied
• Different classes of bifurcations exist
 • Transitions between stable, cyclic and chaotic regimes
 • Hopf bifurcation: signaled by critical slow down
 • Non-local bifurcations: → ?
 • Possible stretched oscillations
 • Phase locking: again: look for alternative attractors
 • e.g. increased variance and flickering before epileptic seizure
Spatial patterns as early warning

- Many systems consist of coupled units
- Units tend to take states similar to neighbours
- E.g. financial markets
- Distribution of the states of the units may change in characteristics ways
- E.g. models of desert vegetation becomes characterized by regular patterns when nearing a barren state
Precursors of transitions: climate

- E.g. the greenhouse-icehouse transition 34 Myr ago
- Difficult to unveil underlying mechanisms
- Increase in autocorrelation was found in each abrupt climate change analysed
- Flickering preceded the abrupt end of the Younger Dryas cold period

...
Precursors of transitions: ecosystems

- Alternative attractors have been demonstrated in lakes
- Also suggestions that stable states separated by critical thresholds occur in all kind of ecosystems ranging from rangelands to marine systems
- Increase in variance of the population of fish stocks
- Work on early warnings is just an emerging field...
- ...
Precursors: asthma attacks and epileptic seizures

- Human lungs can display a self-organized pattern of bronchoconstriction that might be the prelude to dangerous respiratory failure → comparable with desert vegetation

- Epileptic seizures
 - Synchronous firing of neighbouring cells
 - Difficult to predict in advance
 - But
 - Change in variance of the electrical signal minutes before
 - Reduced dimensionality of the signal up to 25 minutes before
 - Mild energy bursts followed by frequent symptomless seizures → flickering behaviour
Precursors of transitions: finance

• Prediction of shifts is heavily studied
• But: discovery quickly leads to its elimination
• Therefore, they are difficult to predict
• Still, literature shows that market dynamics may contain information presaging major events
 • e.g. increased trade volatility
 • Systematic relationships in variance and 1st order autocorr.
Outlook

• Similar early-warning signals can appear in widely different systems

• But more work is needed to find out how robust these signals are in chaotic / stochastic / spatial complex systems

• False negatives
 • Sudden transition without detectable early-warning signals
 • E.g. transition caused by a rare extreme event
 • E.g. fast and permanent change of external conditions (fig a)
 • Statistical difficulty of picking up the early-warning signal
 • E.g. very long time series for detecting increased autocorr.

• Changes of external perturbation regime
Outlook

• Although many similarities across disciplines, still many challenges to overcome
 • E.g. filtering techniques for time series to increase sensitivity
 • Result depends on parameter choices in filtering
 • Need for reliable statistical procedures to test significance of increase in autocorrelation, etc.
 • Perturbations will often trigger a transition before reaching a bifurcation point
 • Exact moment of transition remains difficult to predict
 • For practical applications: sufficiently early detection required
• General early-warning signals are only one of the tools
 • E.g. repeatability of transitions